金榜之路
学大陪你
个性化辅导
关于我们  |  联系我们

对数函数练习题及答案

来源:学大教育     时间:2014-04-29 22:00:43


在我们大家的对数函数学习中,如果我们能够掌握一些好的对数函数学习方法,就能够有效地提高我们的对数函数学习能力。多见的进行习题训练,能够让我们的对数函数的学习变得轻松。下面,为大家介绍一些对数函数练习题及答案,希望对大家学习有帮助。

一、选择题(本大题共10个小题,每小题5分,共50分)

1.化简[3-52] 的结果为 (  )

A.5            B.5

C.-5 D.-5

解析:[3-52] =(352) =5 × =5 =5.

答案:B

2.若log513•log36•log6x=2,则x等于 (  )

A.9 B.19

C.25 D.125

解析:由换底公式,得lg 13lg 5•lg 6lg 3•lg xlg 6=2,

∴-lg xlg 5=2.

∴lg x=-2lg 5=lg 125.∴x=125.

答案:D

3.(2011•江西高考)若f(x)= ,则f(x)的定义域为 (  )

A.(-12,0) B.(-12,0]

C.(-12,+∞) D.(0,+∞)

解析:f(x)要有意义,需log (2x+1)>0,

即0<2x+1<1,解得-12

答案:A

4.函数y=(a2-1)x在(-∞,+∞)上是减函数,则a的取值范围是 (  )

A.|a|>1 B.|a|>2

C.a>2 D .1<|a|<2

解析:由0

∴1<|a|<2.

答案:D

5.函数y=ax-1的定义域是(-∞,0],则a的取值范围是 (  )

A.a>0 B.a>1

C.0

解析:由ax-1≥0得ax≥1,又知此函数的定义域为(-∞,0],即当x≤0时,ax≥1恒成立,∴0

答案:C

6.函数y=x12x|x|的图像的大致 形状是 (  )

解析:原函数式化为y=12x,x>0,-12x,x<0.

答案:D

7.函数y=3x-1-2,   x≤1,13x-1-2, x>1的值域是 (  )

A.(-2,-1) B.(-2,+∞)

C.(-∞,-1] D.(-2,-1]

解析:当x≤1时,0<3x-1≤31-1=1,

∴-2<3x-1-2≤-1.

当x>1时,(13)x<(13)1,∴0<(13)x-1<(13)0=1,

则-2< (13)x-1-2 <1-2=-1.

答案:D

8.某工厂6年来生产甲种产品的情况是:前3年年产量的增大速度越来越快,后3年年产量保持不变,则该厂6年来生产甲种产品的总产量C与时间t(年)的函数关系图像为

(  )

解析:由题意知前3年年产量增大速度越来越快, 可知在单位时间内,C的值增大的很快,从而可判定结果.

答案:A

9.设函数f(x)=log2x-1, x≥2,12x-1, x<2,若f(x0)>1,则x0的取值范围是 (  )

A.(-∞,0)∪(2,+∞) B.(0,2)

C.(-∞,-1)∪(3,+∞) D.(-1,3)

解析:当x0≥2时,∵f(x0)>1,

∴log2(x0-1)>1,即x0>3;当 x0<2时,由f(x0)>1得(12)x0-1>1,(12)x0>(12)-1,

∴x0<-1.

∴x0∈(-∞,-1)∪(3,+∞).

答案:C

10.函数f(x)=loga(bx)的图像如图,其中a,b为常数.下列结论正确的是 (  )

A.01

B.a>1,0

C.a>1,b>1

D.0

解析:由于函数单调递增,∴a>1,

又f(1)>0,即logab>0=loga1,∴b>1.

答案:C

二、填空题(本大题共4小题,每小题5分,共20分)

11.若函数y=13x x∈[-1,0],3x x∈0,1],则f(log3 )=________.

解析:∵-1=log3

∴f(log3 )=(13)log3 =3-log3 =3log32=2.

答案:2

12.化简: • =________.

解析:原式= •

= •

=a •a =a.[

答案:a

13.若函数y=2x+1,y=b,y=-2x-1三图像无公共点,结合图像求b的取值范围为________.

解析:如图.

当-1≤b≤1时,此三函数的图像无公共点.

答案:[-1,1]

14.已知f(x)=log3x的值域是[-1,1],那么它的反函数的值域为________.

解析:∵-1≤log3x≤1,

∴log313≤log3x≤log33,∴13≤x ≤3.

∴f(x)=log3x的定义域是[13,3],

∴f(x)=log3x的反函数的值域是[13,3].

答案:[13,3]

三、解答题(本大题共4个小题,共50分)

15.(12分)设函数y=2|x+1|-|x-1|.

(1)讨论y=f(x)的单调性, 作出其图像;

(2)求f(x)≥22的解集.

解:(1)y=22,  x≥1,22x, -1≤x<1,2-2, x<-1.

当x≥1或x<-1时,y=f(x)是常数函数不具有单调性,

当-1≤x<1时,y=4x单调递增,

故y=f(x)的单调递增区间为[-1,1),其图像如图.

(2)当 x≥1时,y=4≥22成立,

当-1≤x<1时,由y=22x≥22=2×2 =2 ,

得2x≥32,x≥34,∴34≤x<1,

当x<-1时,y=2-2=14<22不成立,

综上,f(x)≥22的解集为[34,+∞).

16.(12分)设a>1,若对于任意的x∈[a,2a ],都有y∈[a,a2]满足方程logax+logay=3,求a的取值范围.

解:∵logax+logay=3,∴logaxy=3.

∴xy=a3.∴y=a3x.

∴函数y=a3x(a>1)为减函数,

又当x=a时,y=a2,当x=2a时,y=a32a=a22 ,

∴a22,a2⊆[a,a2].∴a22≥a.

又a>1,∴a≥2.∴a的取值范围为a≥2.

17.(12分)若-3≤log12x≤-12,求f(x)=(log2x2)•(log2x4)的最大值和最小 值.

解:f(x)=(log2x-1)(log2x-2)

=(log2x)2-3log2x+2=(log2x-32)2-14.

又∵-3≤log x≤-12,∴12≤log2x≤3.

∴当log2x=32时,f(x)min=f(22)=-14;

当log2x=3时,f(x)max=f(8)=2.

18.(14分)已知函数f(x)=2x-12x+1,

(1)证明函数f(x)是R上的增函数;

(2)求函数f(x)的值域;

(3)令g(x)=xfx,判定函数g(x)的奇偶性,并证明.

解:(1)证明:设x1,x2是R内任意两个值,且x10,y2-y1=f(x2)-f(x1)=2x2-12x2+1-2x1-12x1+1 =2•2x2-2•2x12x1+12x2+1=22x2-2x12x1+12x2+1,

当x10.

又2x1+1>0,2x2+1>0,∴y2-y1>0,

∴f(x)是R上的增函数;

(2)f(x)=2x+1-22x+1=1-22x+1,

∵2x+1>1,∴0<22x+1<2,

即-2<-22x+1<0,∴-1<1-22x+1<1.

∴f(x)的值域为(-1,1);

(3)由题意知g(x)=xfx=2x+12x-1•x,

易知函数g(x)的定义域为(-∞,0)∪(0,+∞),

g(-x)=(-x)•2-x+12-x-1=(-x)•1+2x1-2x=x•2x+12x-1=g(x),

∴函数g(x)为偶函数

希望以上所介绍的对数函数练习题及答案,能够帮助我们大家提高自己的对数函数学习效率。高中的学习过程中,掌握好的函数学习方法,能够有效的提高我们大家的函数学习效率,更加轻松的做好高中数学的学习。希望大家都能够做好对数函数的学习,考出好的数学成绩。

网站地图 | 全国免费咨询热线: | 服务时间:8:00-23:00(节假日不休)

违法和不良信息举报电话:400-810-5688 举报邮箱:info@xueda.com 网上有害信息举报专区

京ICP备10045583号-6 学大Xueda.com 版权所有 北京学大信息技术集团有限公司 京公网安备 11010502031324号

增值电信业务经营许可证京B2-20100091 电信与信息服务业务经营许可证京ICP证100956